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FOREWORD 

A major problem in all engineering design is that of reliability and 

quality control. Standard procedures exist for assuring the desired reli- 

ability under ordinary circumstances. This report describes an unusual 

situation, in which the tolerances on the components of an assembly are 

not small enough to ensure that the assembly will work properly, and provides 

estimates of the probability of a defective assembly in this case. 

ii 
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ABSTRACT 

This report describes an investigation of how errors in components of an 

assembly can affect its performance> In particular the report de;  with the 

situation, uncommon in engineering practice, where the ovtput tolerance of 

the assembly may be violated even tliougn the tolerances on  the components are 

all met. This situation is analyzed to estimate the probability that the 

output tolerance will be satisfied given that the component tolerances are 

met. Three methods are described for estimating this probability, their 

results are compared in a number of cases, and a best method is chosen. 

Several simple rules, suitable for preliminary estimates, are also given. 

An example is worked out showing a simple application of the method. 

U 
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1. INTRODUCTION 

This report deals with certain aspects of the general problem of errors 

and tolerances in the design and testing of equipment. It is presumed that 

the piece of equipment is required to operate at a certain level of output. 

Ordinarily the designer assigns a certain error-tolerance to this output, 

chosen so that the equipment will function properly if the output error 

satisfies its tolerance. The output error usually arises from errors in the 

various components that have been assembled to make the piece of equipment. 

The designer will customarily know the relation between the output error and 

the component errors. Common practice (see Bowker and Lieberman^ ') is 

that the designer will combine this relation with the output tolerance to 

find tolerances on each component such that satisfaction of these component 

tolerances will ensure that the output tolerance is met. 

We are concerned here with the uncommon situation where satisfaction 

of the component tolerances does not ensure satisfaction of the output 

tolerance. This state of affairs can arise when an error has been made in 

choosing the component tolerances, or when it is impractical (or too expensive) 

to make the component tolerances small enough. In either case we must face 

the possibility that all the components will meet their tolerances but some 

of the assembled pieces of equipment will not work properly. The practical 

information that we want is the probability that the output tolerance will 



bs satisfied. With this information we can estimate how many extra pieces 

of equipment must be manufactured on the average in order to obtain a given 

number of workable assemblies. 

In the following section we shall describe the general procedure for 

estimating the probability that the output'satisfies its tolerance, supposing 

that each component error is normally distributed with zero mean, known 

variance and known tolerance. Three mathematical methods are given for 

carrying out the calculations. One is of Monte-Carlo type and is described 

in Section 3« The other two methods use the Characteristic Function in 

different ways. Section h gives formulas for the Characteristic Functions of 

the various distributions, and Sections 5 s»cL 6 use these formulas in 

estimating the desired probability. Various simple approximations and limit- 

ing cases are examined in Section 7« Section 8 describes the results, which 

are then discussed in Section 9. The report closes with a simple example of 

how these estimates might be used in practice, Section 10. 

»&■■■ WmmrniM 



We let Yj be the error in the j-th component, j 3 1,2... *-.N t 

and X0 is the error in the output. The relation between the output error 

and the component errors is taken as linear, 

N 

where the Cj are assumed to be known constants. 

It is assume! initially that Yj is normally distributed with zero mean 

and variance O"« 

j=l, V-. N 

. Then we may define 

Sj-ICjIoj- 
and the relation (l) can be written 

where Xj is normally distributed with zero mean and variance  S* « 

We let  Dj^O be the tolerance on the error, Y-, in the j-th component, 

and  Bo^0 he the tolerance on the output error, X0. Thus, when Yj satisfies 

its tolerance,we have 

IVjN Dj 

(1) 

(2) 

(3) 
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and, if X0 satisfied its tolerance, then 

We define also 

Bj-lqlOj 
as the tolerance on Xj, so that, if Xj satisfied its tolerance, then 

We notice also that 

Bj/Sj - Dj/crj 

We now define certain probabilities. Pj is the probability that the 

j-th.error satisfies its tolerance, i.e., 

Pc is the probability that all component errors satisfy their tolerances. We 

assume that the component errors are independent of each other, and therefore 

Pc=prot[|X]I^Bj     &r   «U   j] 

CO 

(5) 

(6) 

(7) 

;.4. '■;■' i. 
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Further, we define 

P0 = prob ^""the output error satisfies its tolerance and all component 

errors satisfy their tolerances_7 

Po = prob C  |X0l£ B0  and fy\ £ fcj   for all j J 

The theorem on compound probability asserts that 

P0 = prob f |X0| £ B>0 ,  given that |Xj| £ Bj   for all j J 

x prob f IX-1 ^ ßj     for all j J 

The probability that is of greatest practical interest is 

P* = prob £~ \X0\^ 6o >     given that |Xjl < Bj  for all jj 

Then we can write (9) with the aid of (7) and (10) as 

P*- t/Pc - P./fi' 
Finally, it is useful to define 

A= £BJ=  llCjlDj 

If all the components satisfy their tolerances, then, using a familial* 

property of inequalities, we find 

(8) 

(9) 

(10) 

(11) 

(12) 

IX.H|Xj|*|lXi«iB; i 
and so, because of (12), X0 must satisfy the inequality 

iXJkA (13) 
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If  A 4 B0 then (13) Implies 

In this case we see that, if each component satisfies its tolerance, the 

output error X0 must always satisfy its tolerance, and from (lO) and (ll) 

we conclude that 

This case is the common one in design practice, i.e., the tolerances are set 

so that, if each component meets its tolerance, the output will necessarily 

satisfy its tolerance. However, in this paper we are interested in the 

opposite case, where 

A>B0 o 

and 

0 < P*^ 1 

Our main objective is to estimate P*. We define F* (X0) as the density 

function of the output when the separate component errors all satisfy their 

tolerances. Since the component errors are normally distributed, their density 

functions, when they satisfy their tolerances, are symmetrically-truncated 

normal distributions, and F* (XQ) is the density function of a finite sum of 

such distributions. P* is the integral between -B0 and B0 of F* (X0). 

Unfortunately F* (XQ) is not easily expressible in terms of the parameters 

3 I 
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of the component density functions. However, we can make a nuaber of simple 

comments about the behavior of F* (Xo). 

(i)   If the component error tolerances are all very large, i.e., 

DJ ^^ 5j , each component error is approximately normally distributed, 

hence F* (X0) is approximately a normal function. 

(ii)  If N, the number of error components, is large, the Central 

Limit Theorem leads us to expect that F* will be approximately a normal function. 

(iii) Contrariwise, F* will depart furthest from normality when some 

Bj/Sj are smali and when N is small. This will be particularly so when one 

component dominates all the rest, so that effectively N = 1. 

f 
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3.  MONTS-CARLO METHOD 

This method is based on counting the numbers of successes in sampling 

from distributions that are random, independent and normally distributed 

■with zero mean. A computer program was written to carry out this procedure. 

The program has as input the quantities Cj, Dj (j = 1, 2, ... N) and 

B0, together with the list of random numbers. L sets of N random numbers axe 

read in successively. For each set, the K random numbers are taken as the 

values of Yj (j = 1, 2, ... N), and the value of X0 is calculated from (l). 

Counts are made of the followi.ig quantities: 

nj (j = 1, ... N) is the number of cases for which I Tjj ^ Uj 

nc is the number of cases for which 1 lj 1 ^ Uj   for all j. 

no is the number of cases for which I Ij I — Dj    for all j 

Then we obtain the estimates 

Pj = nj/L       j = 1, 2, ... N 

Pc = nc/L 

P0 = n0/L 

P* = P0/Pc = n0/nc. 

j£ 
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In using this method ve had to choose L large enough so that reasonably- 

stable estimates of P* vere obtained. The choice L = 200 was used, and the 

entire procedure repeated four times with different sets of random numbers. 

The final estimates of the probabilities are given as the means of the results 

for the four repetitions. 



k.      CHARACTERISTIC FUNCTIONS 

The remaining two methods of estimating P* employ the Characteristic 

Function (or Fourier Transform) as the main tool in the analysis. In this 

section we present the general formulas that form the basis of t>>5se methods. 

If F (X) is a density function, then 

X-* 

(lh) 

is its Characteristic Function or Fourier Transform. It is unnecessary to 

dwell on the properties of the Characteristic Function which are well-known. 

We record only one formula, which is easily derived from the Complex Inversion 

Relation, QQ 

J (=(<*)<U = iv"1 j c^ltlf1 sinttX)AX to)    . 

This formula expresses the area under the density curve between -X and X 

(or the probability that the variable lies between -X and X) directly as an 

integral of  <^t*t)» 

We define Fj (Xj) as the density function for Xj and <Pj("fc) as the 

corresponding Characteristic Function. Similarly u>© ("t) is the Character- 

istic Function of the output distribution, F* (X0). Since the Xj are assumed 

to be independent, it is well-known that 

♦.to* 7T V** <*>    • 

10 
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Both methods of estimating P* are based on finding  <i> (-fc)  from the 6.(~t) 

by means of (l6). 

To find §• (t)  we first write down the density function of Xj, 

which is that for a normal distribution with variance  oj f  truncated at 

±BJ> , a. -.-1 
J.-^^dul   e.-"-^^ -*iAttf) 

- 0 IXi|>% 

This is then substituted into (l4), and we find, after some manipulation,* 

+jW=-e- erf r- 
Re. { er-f (Jr. + xft)} 

Where 

A series representation of  4>. (t)  in real terms may be derived by 

expanding the Error Function in a Taylor Series about i^r . By means of 

(A. 5) we find 

*For completeness a list of the basic forma"as relating to the Error 

Function is given in Appendix A. 

11 

(17) 

(13) 

(19) 

(20) 

,;,■• 



.^mmm^H^^^m ^rCC3rT^5STT!TETCS!!r BHBWW^ffflStWnW  «.T i.nM"' in. 'miii.i'j'.'i"iiup."> 

!   < 

where H  is the Hermite Polynomial of degree k. This aeries converges 

absolutely for any finite values of y»j and H\   . Further, we may expand 

e"™    about Pj = 0 and obtain explicitlythe leading terms (up to t^) 

in the expansion of  9,C*t)   about t = 0, 

i. -af 
+5;{3-z^iii|±mj^](t>!) 

Although the series in (20) converges for any finite values of Pj and 

the convergence is slow whenPj is large, and an alternative method of 

computation is needed. For this purpose it is convenient to use the real 

and imaginary parts, Wr and Wi, of the complex function, W, defined in (A.9). 

From (17), (A.IO) and (A.ll) we obtain the exact formula 

* - 

-*xr. 

A rational aj roximation for W is given in (A.12), and from it we may derive 

the following approximations for Wr and W^: 

(21) 

(22) 

(23) 

(24) 

, ft 

;;i 

12 
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Here 

xi = /S "Kl "% (£5) 

and f" and TV  are constants of the approximation, listed in Appendix A. 
IS       '<\ 
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I 5.  APHIOXIMAIION USING MOMENTS 

This method consists of assuming that the output density function is 

approximately of the form 
,-£/as') oy- s'VftQ^^ +QMsJ\i 

where G0, G2 and G^ are constants to he determined, and S is the exact second 

moment of the output. The constants G0, G2 and G^ are chosen hy matching 

moments,  i.e., hy using 

oo 

\ X0
iK

3txc)<jX8=M1K, ^0,1,2. 
-00 

where *^XK     are ***e exact> even-ordered moments of the output distribution. 

M0, M2 and M^ are determined by using the well-known relation 

.*K 

Because the   ^ (•£) are characteristic functions and are all even in 

t, we have 

$-(o) = l,     ♦/to)* 4>j"'(o) =0 

Differentiating (16) and using (29) we find 

(26) 

(27) 

(20) 

(29) 

. !| 

Ik 

U!T;; 
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• M.- ♦.(«>)-1 

M3 = -"" t'"'°) =0 

From (2l) we obtain 

-%Vf] 

where 

»/Z 
ij = Bj/Sj = 2.' *; 

and the functions A and A' are defined in (A.2) and (A.6). We calculate 

M2 and Mi4. by inserting these values in (32) and (3k). 

If we combine (26) with (27) and use the general formula 

-co 

we obtain the following linear, algebraic equations for 

15 

(30) j 

(3D 

(32) 

(33) 

(3*0 
S 

(35) 

(36) 

(37) 

(38) 
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G0, G2 and G^: 

3k. + »«"C4+ K*V MH/SH- MH/M^ 

This system is solved for G0, G2 and Gjp the results are inserted into 

(26), and we can then calculate the approximate P* by means of 

P*= J» (WAX. = 2j j(X.)dX„ 
-6. ■ o 

Using the general relation (38) again we find the following formula for P* 

P*(U-AC8-HfcC5-£x)Äte) 

where 

1= 6L/S 

(39) 

C»o) 

(in) 

(to) 

We shall call the estimate of F* given by (kO)  the moment approximation. 

16 
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6.  NUMERICAL INTEGRATION OF THE CHARACTERISTIC FUNCTION 

This procedure consists merely of carrying out the integration of (15), 

i.e., evaluating 

&.. GO 

where   4o(^  is calculated from   ^jK)   *>y C1^)« The  <$>»(■£) 

are evaluated by use of (20) when o* is of moderate size and (22) - (25) 

when P\  is large. 

In general it is necessary to evaluate the integral by numerical means. 

To carry this out with sufficient accuracy is sometimes difficult because 

& (*t)   dies away in oscillatory fashion as "t—*CD . Usually, most of 

the contribution to the value of the integral comes from near t = 0, but 

significant contributions can also come from further out, where *T0Ct^ 

may oscillate rapidly. In cases where a significant contribution comes from 

the region of rapid oscillation, the Integration must be carried out with 

great care. 

The following procedure was adopted for carrying out these integrals. 

A fundamental range of t say T, was chosen, roughly small enough so that 

y^tMs^it)] 

Ct3) 

has no more than 5 zeroes in the range (n-l)T 4 t 6. nT for n = 1, 2, 3, .. M. 

17 



tft  P...U-ULI.H.IW|> «i.n.n.M <>..,, +, ^i^jipiw, ,„| ,,. pn;  .I.I.WII.IP jjipifw.,.,. 

M is taken so large that the ranges beyond n = M contribute negligibly to 

the integral. For each range of t the integral was evaluated by Gaussian 

Integration, and the total integral obtained by adding the results for all 

the ranges. Some experimentation was needed to find a suitable number of 

points to use in the Gaussian Integration and to determine how large M should 

be. 

The computer program that carried out this evaluation of P* was 

occasionally slow-running and was used primarily for spot-checking the results 

of the other methods. 

18 
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7.      SIMPLE APPROXIMATIONS AND .LIMITING CASES 

A number of obvious,   simple approximations for I* can be derived,  and 

we describe three of them briefly here. 

(i)        If all the component tolerances are very large,  i.e.,  if 

Dj/°J   * V5J    >>  l W M 

the distribution associated with each Xj is approximately normal with variance 

-*j  . Then F* (X0) is approximately a normal distribution with variance 

-*■*     , where 

Z     *   2 
S     -  7 S 

Hence we may write this estimate of P* as a function of B0 in the form 

Pt*(VS,)= A(60/sI) 

(ii)  A different approximation may be obtained if we assume that 

F* (X0) is a normal distribution with variance  SJT  , truncated at points 

i.e. 

F*(x0) = o \K\ > T0 

s 

(hh) 

(*5) ! 

In this case we find the following estimate 

P*(*Jsä*A(*'/$*VMr./$ä,   ß.<Te 

= i- , &o^% 

19 
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The properties of the error function imply that 

PJ(6J^* P*(&A) 

The accuracy of this approximation depends on how well F* (X0) is 

approximated by a truncated normal distribution and hew precisely we can 

estimate t^. There are two cases in which this approximation may be 

tolerably accurate. First, if one component, say the L-th, dominates the 

others, i.e., S^ » S. >  J^L       the output will be approximately 

that of the dominant component, X^, which is a normal distribution truncated 

at +BL» In this case we expect that  i« Voo/5«.)  with TQ = BL> will be a 

fair approximation to P*. Second, if all the C. are roughly equal, and all 
«J 

the Zj are roughly equal to Z^, say, then we expect that F* (X0) will be 

approximately a normal distribution with variance  o>   truncated at 

Hence in this case also   \L- (ßyoL )     should be a decent approximation 

to P*. 

(W) 

(iii) A third simple approximation is obtained by setting G. = 0 in 

(26) and choosing GQ and G2 such that 

-Co 

Then we get as an approximation for P* merely the first terw of (k<>), 

(47) 

20 



8.  RESULTS 

All the cases discussed here have four components, i.e., N = k,  and all 

have OT = 1, j = 1, 2, 3> ^« Eleven different cases were studied with various 

values for the Di and C -• as shown in Table 1. For each case results were 

obtained in the form of graphs of I* as a function of B0/Sj and are displayed 

in Figures 1-12.. Each graph shows the mean and standard deviation of the 

four repetitions of the Monte-Carlo Method as well as the moment approxima- 

tion for that case. The values of Sj, M2 = S and Mi are listed in Table 2. 

The method of integrating the Characteristic Function was used only at 

points where sizeable discrepancies were found between the Monte-Carlo x-^sults 

and the moment approximation. These points' are shown on the appropriate 

graphs and compared with the other methods in Table 3« 

Several additional graphs show comparisons among the moment method 

predictions for different cases. The comparison among Cases (i), (il) and 

(ill) is shown in Figure 12, Cases (Vl), (VIl) and (VTIl) in Figure 13 and 

Cases (IX), (x) and (Xl) in Figure Ik.    Also, the simple approximation 

Pj* is shown in Figure 12, and FJJ* in Figures 13 and Ik  for relevant values 

of T . 
O 

s 
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9.  DISCUSSION 

We shall first compare and comment on the results obtained by the various 

methods, then suggest procedures for estimating P* under various circumstances. 

Figures 1 to 11 show that the agreement between the Monte-Carlo method 

and the moment-approximation is reasonably' good in a general sense. We see 

from Table 3 that, when the results do not agree well, the integration of 

the characteristic function almost always agrees with the moment approximation» 

Of the three methods one expects that integrating the characteristic 

function should be the most accurate. The Monte-Carlo method is usually 

thought to be somewhat inaccurate unless a very large number of samples is 

used, and the above results suggest that this is the case here. Procedures 

like the moment-approximation are fairly common in statistics and often 

give satisfactory accuracy. However, there are two theoretical defects of 

the moment-approximation here that are worth mentioning. First, the approxi- 

mate density function g (XQ) is continuous (see Equation (26)) but the true 

density function, F* (X0), is discontinuous. In fact 

F OQHO 

I 

when X„> A . Second, g (X0) is slightly negative for X0 sufficiently 

large in many cases. Neither of these defects seems to cause serious errors 

in the estimate of P* for the cases studied here since the results agree 

well with the integration of the characteristic function. If serious errors 

are to arise, one would expect to find them when there is a single, dominant 

22 
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component with a low tolerance on it, as in Case (VIIl). Table 3 confirms 

this expectation, for we see that, when B0/Sj = «9^5> the characteristic 

function and moment-approximation differ by .011, whereas the worst error 

observed in the other cases of Table 3 is only .001. However, even in this 

most unfavorable case the error :.n the moment-approximation is small enough 

to be unimportant. 

Figure 12 shows how curves for P* change as the common tolerance value 

for the four components increases from Bj/S« = 1 through 1.5 to 2. As we 

expect, the curves become lower and tend toward the normal curve, given by 

Pj*, with increasing component tolerances. 

The effect on P* of an increasingly dominant component is displayed in 

Figures 13 and Ik.    Figure 13 shows the case where the increasingly dominant 

component has a smaller tolerance than the other components. As C-j_ increases 

from 1 through 2 to 5> the curve of P* is raised toward the curve for Pr-r* 

truncated at B0/Sj = 1, to which it must ultimately tend. In contrast 

Figure Ik  shows what happens when the increasingly dominant component has ä 

higher tolerance than the others. As Cj_ increases from 1 through 2 to 5, 

the curve for P* is lowered toward the curve for P-r-r* truncated at 

BQ/SJ = 2, to which it ultimately tends. 

When all the Ci  are roughly the same, we may also inquire about the 

effect of changing the component tolerances but keeping the average component 

tolerance constant. Comparing Cases (il), IV) and (v) we s?e that this has 

23 
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scarcely any effect on P*. In other words, when the Cj are roughly equal, 

the mean component tolerance has a considerable influence on P* (see Figure 

12) but the variance in the component tolerances has negligible effect. 

A reasonably extensive comparison of the simple approximations, {h'j), 

{kQ)  and (k9) with the more accurate calculations suggests the following as 

a rule: 

(i)   Use PJI* if one component dominates greatly. 

(ii)  Use Pj* if BJ/SJ >  2 for all J. 

(iii) Use P-TTT* if no one component dominates. 

Use of this rule will give fair results, perhaps suitable for an initial 

estimate. The simplest accurate procedure is the moment-approximation, 

given by (te) - (kk). 

2k 
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10.  WORKED EXAMPLE 

A certain piece of mechanical equipment is supposed to operate at a 

load of 900 Its. Three components, standard items, are assembled to form 

this mechanism. Components 1 and 3 are springs and component 2 is an 

electrical switch. Their component errors, Y^, Y2 and Yo, are related to 

the error in the output load by (l) where 

C1 = P.kO lb/inch 

C2 = 15 lbs/volt 

C3 » 210 lb/inch 

From information about the manufacture of the components we know that the 

distribution of their errors is roughly normal with zero mean and 

#1: 60$ are acceptable at a tolerance of .1-inch 

#2: 70$ are acceptable at a tolerance of 1 volt 

#3= 92$ are acceptable at a tolerance of .1-inch 

From Tables of the normal distribution we find the standard deviation 07 

as follows: 

#1:  .8 acceptable corresponds to .1 = 1.28 07 

07_ = .0781-inches 

#2:  .7 acceptable corresponds to 1 = 1.04 OT 

G~2  = .962 volts 

25 
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Then 

#3'- »92 acceptable corresponds to .1 = 1.75 <^ 

(J^ = .0571 inches 

51 = 21*0 x .0781 = 18.7 lbs. 

52 = 15 x .962 = Ik.k  lbs. 

S, = 210 x .0571 = 12.0 lbs. 

The tolerances established on the components are 

D-j_ = .15 inches, Dg = 2 volts, Do = .07-inches 

and therefore from (4) and (12) 

B;L = 36 lbs, B2 = 30 lbs, B3 = 1^.7 lbs. 

A = 80.7 lbs. 

The tolerance on the load needed to activate the mechanism is 

B0 = 30 lbs. 

Since B0<A  we know that O^r < 1 , i.e., ve know it is possible that 

each component will satisfy its tolerance but the tolerance on the load will 

be violated. 

First we find a quick, rough estimate of I*. In order to determine 

which one of the simple estimates, (45) - (^7), is best, we find from (37) 

^S V5. * W )  2-z= 2.0%,  i3=r I.XX 
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These are not all ^ 2. Also none of t..- C. dominates all the others. The 
j 

rule stated at the end of oection 9 suggests, therefore, that we use PIT-r. 

To find PJJJ we need to find Mg by means of (32) and (35). From the tables 

of the normal function we find 

Ate>.W,        Ateo)-.^    At^=/718 

A'ft^.uo,      A'teJ-.cm,   A'ft3)*=.3"n 

Putting these values into (35), then combining the results with (32) we get 

From (>+2) Z = 30/21.9 = I.37. Using the estimate (Vf), the normal function 

table gives 

PIII* = A ^-37) = .829 

The more accurate approximation (40) involves finding Mr in addition to 

M2. The calculation of M^ by (3^) and (36) leads to M^ = 625,000. Putting 

this into (kl)  and combining with (ko)  we find 

P* (Z) = .829 - .006 = .823 

Thus, if all components satisfy their tolerances, the probability that 

the mechanism will operate at a load between 870 and 930 lbs. is about .82. 

On the average, therefore, if we need 1,000 workable mechanisms, we should 

27 
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expect to assemble about 

1000/.823 = 1215 

out of satisfactory components. 

I 
ji 

28 

i 

i 



■Wl^»~— — ■ppuw^iBB 

REFERENCES 

1. Bowker, A. H., and Lieberman, G. J., "Engineering Statistics", 

Prentice Hall, Englewood Cliffs, N. J., 1959, Chapter 3. 

2. Abramowitz, M., and Stegun, I. A., "Handbook of Mathematical Functions", 

National Bureau of Standards, Applied Math Series No. 55> Sixth Printing, 

November I967. 

S 

29 



I'll Ml I« -J-L1  ■•WWJT-. 

APPENDIX A - FORMULAS RELATING TO THE ERROR FUNCTION 

i ■ 

The following are fundamental formulas relating to the Error Function 

p 
and are taken from Reference . 

erK£)- lTT-,Aje-°X(\u (A.l) 

In (A.l) the integration may he carried out along any path in the complex 

U-plane connecting U-O and U=Z. An alternative definition is 

A(«- erf U"/z2.) = ("v)"A I e"*A A <A-2> 

We have also 

erf (-2:)= ~er4Ci) 

tri (*) =   er4 (£) 

(A. 3) 

(A.4) 

where the har denotes T&e complex conjugate. 

Various derivatives of these quantities can be found from 

JiL (evf l)- C-1)K l"ir"^e^HKfcfc) 
at K+l 

tOO 

A'^)= AA/A1 = CVrr),Ae t/x 

(A. 5) 

(A. 6) 

where Hjj (z) is the Hermite Polynomial of k-th degree. ThCoe satisfy the 

relations 
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(A.7) 

(A.8) 

Also we list several formulas involving the complex function W. 

WCl)sW,. {*)+iWife) = e * [1 - er+ (-A3JJ <*•'> 

or 

erfte)= 1-H(il)e 
-2l 

(A.10) 

and 

■W(*>* "Wi-fc) (A. 11) 

W (Z) may he found from the rational approximation 

3 
I W)=j,il V(*z-Mo + eCi) 

provided  ^3V> ^«1 or N$V>3  . The error £(z) satisfied the inequality 

\£(.^l^ X*\0       . The constants \T"K and Vv have the following 

values 
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TABLE 1 

Case   Ci   C2   C-,   C^   QL 02  D3 

II 1.5   1.5   1.5   1.5 

III 

IV 1.5   1.5 

VI 1.5   1-5   1.5 

VII 1.5    1.5   1.5 

VIII   51111 1.5   1-5   1.5 

IX 

XI 1112 

Component Error Coefficients (cj and Tol- 

erances (D.) in the Eleven Cases Studied 
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TABLE 2 

Case 

II 

III 

IV 

VI 

VII 

VIII 

IX 

2.646 

5.292 

XI 

2.646 

5.292 

M2 

1.165 

2.206 

3.095 

2.168 

2.130 

1.946 

2.819 

8.933 

1.647 

3.968 

20.22 

M4 

3.709 

13-53 

27.22 

13.IO 

12.67 

10.47 

21.60 

182.5 

7.490 

40.90 

988.5 

The Standard Deviation, SU, of the Output 

Distribution Calculated by the Normal Re- 

lation, and the Output Moments Mp, Mr, in 

the Eleven Cases Studied 
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TABUE 3 

* 
Case 

(I) 

Br 

1.6 

p* p* p* 
Monte        Char. Mom. 

B0/S_        Carlo     Function     App. 

.8 .822 .858 .858 

(III) 2.8 1.4 .860 .887 .8J7 

(IV) 2.4 1.2 .870 .896 .896 

(V) 1.2 .6 .60: .579 .58O 

(V) 1.0 .849 .825 .825 

(VI) 1.2 .6 .612 .599 .600 

(VIII) .945       .928       .915       .904 

(K) 1.2 .6 .677        .639        .640 

(IX) 2.4 1.2 .912 .940 .940 

(X) 3.175        1.2 .907 .386        .886 

Comparison among the Values of P* given 

by the Three Methods of Calculation for 

Various Cases and Tolerances 

34 



s 

Figure 1: P* (B0/Sj) in Case I. The curve is -.he 

moment approximation, (ho),  and the circles 

are Monte-Carlo estimates 
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Ba/S I 

Figure 2: I* (BQ/SJ) in Case II. The curve is the 

moment approximation, (kO),  anc1. the circles 

are Monte-Carlo estimates 
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Figure 3: P* (BQ/SJ) in Case III. The curve is the 

moment approximation, (k-O)}  and the circles 

are Monte-Carlo estimates 
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Figure k:    P* (BQ/SJ) in Case IV. The curve is the 

moment approximation, (*K)), and the circles 

are Monte-Carlo estimates 
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Figure 5: P* (BQ/SJ) in Case V. The ourve is the 

moment upproximation, (ko),  and the circles 

are Monte-Carlo estimates 
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Figure 6: P* (B0/SI) in Case VI. The curve is the 

moment approximation. (4o), and the circles 

are Monte-Carlo estimates 
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Figure 7: P* (B0/Sj) in Case VII. 'Tie curve is the 

moment approximation, (kO),  and the circles 

are MonJ .-Carlo estimates 
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Figure 8: P* (BQ/SJ) in Case VIII. The curve is one 

moment approximation, {ho),  and the circles 

are Monte-Carlo estimates 
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Figure 9: P* (BQ/SJ) in Case IX, The curve is the 

moment approximation, (4o), and the circles 

are Monte-Carlo estimates 
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Figure 10: P* (B0/Si) in Case X. The curve is the 

moment approximation, (^-O), and the circles 

are Monte-Carlo estimates 
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Figure 11: P* (B0/Sj) In Case XI. The curve is the   \ 

moment approximation, (4o), and the circles 

are Monte-Carlo estimates 
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Figure 12: Comparison of P* (BQ/QJ)  for Cases (i), 

(il), (ill), using moment prediction, 

and P*j. 
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Figure 13: Comparison of P* (BQ/SJ) for Cases (Vl), 

(Vll), (VIIl), using moment prediction, 

and P» . 
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Figure Ik:    Comparison of P* (B0/Sj) for Cases (iX), 

(x), (Xl), using moment prediction, and 

P*ir 
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